Hotline: 024.62511017

024.62511081

  Trang chủ   Sản phẩm   Phần mềm Dành cho nhà trường   Phần mềm Hỗ trợ học tập   Kho phần mềm   Liên hệ   Đăng nhập | Đăng ký

Tìm kiếm

School@net
 
Xem bài viết theo các chủ đề hiện có
  • Hoạt động của công ty (728 bài viết)
  • Hỗ trợ khách hàng (494 bài viết)
  • Thông tin tuyển dụng (57 bài viết)
  • Thông tin khuyến mại (81 bài viết)
  • Sản phẩm mới (218 bài viết)
  • Dành cho Giáo viên (552 bài viết)
  • Lập trình Scratch (3 bài viết)
  • Mô hình & Giải pháp (155 bài viết)
  • IQB và mô hình Ngân hàng đề kiểm tra (126 bài viết)
  • TKB và bài toán xếp Thời khóa biểu (242 bài viết)
  • Học tiếng Việt (182 bài viết)
  • Download - Archive- Update (289 bài viết)
  • Các Website hữu ích (71 bài viết)
  • Cùng Học (98 bài viết)
  • Learning Math: Tin học hỗ trợ học Toán trong nhà trường (74 bài viết)
  • School@net 15 năm (153 bài viết)
  • Mỗi ngày một phần mềm (7 bài viết)
  • Dành cho cha mẹ học sinh (123 bài viết)
  • Khám phá phần mềm (122 bài viết)
  • GeoMath: Giải pháp hỗ trợ học dạy môn Toán trong trường phổ thông (36 bài viết)
  • Phần mềm cho em (13 bài viết)
  • ĐỐ VUI - THƯ GIÃN (360 bài viết)
  • Các vấn đề giáo dục (1209 bài viết)
  • Bài học trực tuyến (1033 bài viết)
  • Hoàng Sa - Trường Sa (17 bài viết)
  • Vui học đường (276 bài viết)
  • Tin học và Toán học (220 bài viết)
  • Truyện cổ tích - Truyện thiếu nhi (181 bài viết)
  • Việt Nam - 4000 năm lịch sử (97 bài viết)
  • Xem toàn bộ bài viết (8222 bài viết)
  •  
    Đăng nhập/Đăng ký
    Bí danh
    Mật khẩu
    Mã kiểm traMã kiểm tra
    Lặp lại mã kiểm tra
    Ghi nhớ
     
    Quên mật khẩu | Đăng ký mới
    
     
    Giỏ hàng

    Xem giỏ hàng


    Giỏ hàng chưa có sản phẩm

     
    Bản đồ lưu lượng truy cập website
    Locations of visitors to this page
     
    Thành viên có mặt
    Khách: 4
    Thành viên: 0
    Tổng cộng: 4
     
    Số người truy cập
    Hiện đã có 81993583 lượt người đến thăm trang Web của chúng tôi.

    Download Cabri 3D files: SGK Hình 11. Chương III. Bài 2

    Ngày gửi bài: 09/07/2007
    Số lượt đọc: 3731

    Minh họa hình vẽ bằng Cabri 3D theo SGK Hình học 11


    Bài 2. Đường thẳng vuông góc với mặt phẳng


    Hình Thể hiện Mô tả Tải tệp 3D
    H51

    Hình 51. Minh họa cho định lý mở đầu

    Các đường thẳng a, b, c đều được xác định bởi 2 điểm và chuyển động tự do trong mặt phẳng P. O là giao điểm của a, b. Đường thẳng d’ song song với d và đi qua O. Điểm M chuyển động tự do trên d’. M’ là điểm đối xứng của M qua O. Đường thẳng c’ đi qua O và luôn song song với c. Một đường thẳng chuyển động tự do xác định bởi 2 điểm, trong đó có điểm C’ sẽ cắt a, b tại A và B.
    Download
    H52

    Hình 52. Minh họa cho hệ quả của định lý mở đầu

    Điểm M chuyển động tự do trong không gian. Các điểm A, B, C chuyển động tự do trên mặt phẳng P.

    Download
    H53

    Hình 53. Định nghĩa đường thẳng vuông góc với mặt phẳng

    Mặt phẳng P được xác định bởi 3 điểm, trog đó một điểm chuyển động tự do trong không gian, hai điểm còn lại chuyển động tự do trong mặt phẳng chuẩn (mặt phẳng màu xám). Dịch chuyển các điểm này sẽ quan sát được thay đổi của P. Điểm M dịch chuyển tự do trong không gian. Đường thẳng d đi qua M và luôn vuông góc với P. Đường thẳng a chuyển động tự do trên P và được xác định bởi 2 điểm (màu đỏ, không có nhãn).
    Download
    H54

    Hình 54. Minh họa cho định lý 1.

    Đường thẳng d được xác định bởi 2 điểm, điểm phía trên chuyển động tự do trong không gian, điểm phía dưới chuyển động theo phương nằm ngang. Điểm O chuyển động tự do trong không gian. Mặt phẳng R luôn đi qua O và vuông góc với d. Các đường thẳng a, b chuyển động tự do trong mặt phẳng R, mỗi đường luôn đi quan O và các định bởi một điểm thứ hai. Đường thẳng d’ luôn đi qua O là song song với d. Các mặt phẳng P, Q xác định bởi các cặp đường thẳng (d’, a) và (d’, b) tương ứng.

    Download
    H55

    Hình 55. Minh họa cho định lý 2.

    Điểm O chuyển động tự do trong không gian. Đường thẳng a chuyển động tự do trong mặt phẳng P xác định bởi 2 điểm tự do trong mặt phẳng này. Mặt phẳng Q đi qua O và luôn vuông góc với a. Dịch chuyển O và a để quan sát sự chuyển động của các đối tượng trên màn hình.

    Download
    H56

    Hình 56. Liên hệ giữa quan hệ song song và vuông góc (1).

    Đường thẳng a đi qua 2 điểm chuyển động tự do là A, A’. Đường thẳng b đi qua điểm tự do B và song song với a. Mặt phẳng P đi qua một điểm tự do (màu đỏ) và luôn vuông góc với a, b. Dich chuyển a, b và P sẽ quan sát được sự thay đổi các đối tượng hình học trên màn hình.

    Download
    H57

    Hình 57. Liên hệ giữa quan hệ song song và vuông góc (2).

    Điểm A chuyển động tự do trong không gian. Đường thẳng d luôn vuông góc với hai mặt phẳng P, Q. Dịch chuyển các điểm điều khiển (màu đỏ) trên P, Q để quan sát sự chuyển động của các đối tượng khác trên màn hình.

    Download
    H58

    Hình 58. Liên hệ giữa quan hệ song song và vuông góc (3).

    Hai điểm A, B chuyển động tự do trong không gian. Đường thẳng d đi qua A, B do vậy cũng chuyển động tự do trong không gian và luôn vuông góc với hai mặt phẳng P, Q.

    Download
    H59

    Hình 59. Liên hệ giữa quan hệ song song và vuông góc (4).

    Mặt phẳng P xác định bởi 3 điểm X, Y, Z chuyển động tự do trong không gian. Hai đường thẳng a, b đi qua A, B và luôn vuông góc với P. Dịch chuyển A, B và các điểm X, Y, Z để quan sát.

    Download
    H60

    Hình 60. Liên hệ giữa quan hệ song song và vuông góc (5).

    Đường thẳng b có thể dịch chuyển bất kỳ tròn không gian và được xác định bởi 2 điểm B, B’ chuyển động tự do trong không gian. Điểm A chuyển động tự do trong không gian. Điểm A’ chuyển động sao cho đường thẳng a luôn vuông góc với b. Mặt phẳng P đi qua một điểm điều khiển (màu đỏ) và luôn vuông góc với b. Dịch chuyển B, B’, A, A’ và P để quan sát sự chuyển động trên màn hình.

    Download
    H61

    Hình 61. Minh họa cho ví dụ

    Trong hình vẽ trên SA luôn vuông góc với mặt phẳng chứa tam giác ABC. SB vuông góc với BC. AH là đường cao của tam giác SAB.

    Download
    H62

    Hình 62. Phép chiếu vuông góc

    Các điểm M, N, K chuyển động tự do trong không gian. M’, N’, K’ là hình chiếu vuông góc của các điểm M, N, K lên mặt phẳng P.

    Download
    H63

    Hình 63. Định lý 3 đường vuông góc

    Hai điểm A, B chuyển động tự do trong không gian. Điểm M chuyển động tự do trong mặt phẳng P. Dùng chuột dịch chuyển các điểm A, B, M để quan sát sự thay đổi của các đường thẳng a, b, a’. Các đường thẳng a, b luôn vuông góc với nhau.

    Download
    H64

    Hình 64. Mặt phẳng trung trực

    Các điểm A, B chuyển động tự do trong không gian. M chuyển động tự do trong mặt phẳng P là trung trực của đoạn thẳng AB.

    Download
    H65

    Hình 65. Phép đối xứng qua một mặt phẳng

    Điểm M chuyển động tự do trong không gian. Có thể dịch chuyển mặt phẳng P theo phương thẳng đứng bởi điểm màu đỏ. Cho điểm M hoặc P chuyển động và quan sát hoạt động của phép đổi xứng qua mặt phẳng.

    Download
    H66

    Hình 66. Phép đối xứng qua mặt phẳng của tứ diện ABCD.

    Tứ diện ABCD được xây dựng từ 4 điểm A, B, C, D chuyển động tự do trong không gian.

    Các điểm A’, B’, C’, D’ là đối xứng của A, B, C, D qua mặt phẳng P. Có thể cho P chuyển động thẳng đứng bởi một điểm điều khiển (màu đỏ).

    Điểm M chuyển động trên cạnh AC. M’ là đối xứng của M qua P và nằm trên cạnh A’C’.

    Trên hình hiện rõ các đường thẳng vuông góc với P đi qua các đỉnh của tứ diện ABCD để dễ dàng quan sát khi dịch chuyển các điểm A, B, C, D trong không gian.
    Download

    School@net



     Bản để in  Lưu dạng file  Gửi tin qua email


    Những bài viết khác:



    Lên đầu trang

     
    CÔNG TY CÔNG NGHỆ TIN HỌC NHÀ TRƯỜNG
     
    Phòng 804 - Nhà 17T1 - Khu Trung Hoà Nhân Chính - Quận Cầu Giấy - Hà Nội
    Phone: 024.62511017 - 024.62511081
    Email: kinhdoanh@schoolnet.vn


    Bản quyền thông tin trên trang điện tử này thuộc về công ty School@net
    Ghi rõ nguồn www.vnschool.net khi bạn phát hành lại thông tin từ website này
    Site xây dựng trên cơ sở hệ thống NukeViet - phát triển từ PHP-Nuke, lưu hành theo giấy phép của GNU/GPL.