Trang chủ   Sản phẩm   Phần mềm Dành cho nhà trường   Phần mềm Hỗ trợ học tập   Kho phần mềm   Liên hệ   Đăng nhập | Đăng ký

Tìm kiếm

School@net
Bảng giá phần mềm
Educations Software

Đại Lý - Chi Nhánh

Bản tin điện tử
 
Đăng nhập/Đăng ký
Bí danh
Mật khẩu
Mã kiểm traMã kiểm tra
Lặp lại mã kiểm tra
Ghi nhớ
 
Quên mật khẩu | Đăng ký mới

 
Giỏ hàng

Xem giỏ hàng


Giỏ hàng chưa có sản phẩm

 
Xem bài viết theo các chủ đề hiện có
  • Hoạt động của công ty (701 bài viết)
  • Sản phẩm mới (217 bài viết)
  • Dành cho Giáo viên (552 bài viết)
  • Lập trình Scratch (3 bài viết)
  • Mô hình & Giải pháp (155 bài viết)
  • IQB và mô hình Ngân hàng đề kiểm tra (126 bài viết)
  • Hỗ trợ khách hàng (482 bài viết)
  • TKB và bài toán xếp Thời khóa biểu (242 bài viết)
  • Học tiếng Việt (182 bài viết)
  • Thông tin khuyến mại (80 bài viết)
  • Download - Archive- Update (289 bài viết)
  • Các Website hữu ích (71 bài viết)
  • Cùng Học (98 bài viết)
  • Learning Math: Tin học hỗ trợ học Toán trong nhà trường (74 bài viết)
  • Thông tin tuyển dụng (55 bài viết)
  • School@net 15 năm (153 bài viết)
  • Mỗi ngày một phần mềm (7 bài viết)
  • Dành cho cha mẹ học sinh (123 bài viết)
  • Khám phá phần mềm (122 bài viết)
  • GeoMath: Giải pháp hỗ trợ học dạy môn Toán trong trường phổ thông (36 bài viết)
  • Phần mềm cho em (13 bài viết)
  • ĐỐ VUI - THƯ GIÃN (360 bài viết)
  • Các vấn đề giáo dục (1209 bài viết)
  • Bài học trực tuyến (1033 bài viết)
  • Hoàng Sa - Trường Sa (17 bài viết)
  • Vui học đường (276 bài viết)
  • Tin học và Toán học (220 bài viết)
  • Truyện cổ tích - Truyện thiếu nhi (181 bài viết)
  • Việt Nam - 4000 năm lịch sử (97 bài viết)
  • Xem toàn bộ bài viết (8179 bài viết)
  •  
    Thành viên có mặt
    Khách: 9
    Thành viên: 0
    Tổng cộng: 9
     
    Số người truy cập
    Hiện đã có 54834597 lượt người đến thăm trang Web của chúng tôi.

    Toán 10 - Chương III - Bài 3. Khoảng cách và góc

    Ngày gửi bài: 24/10/2011
    Số lượt đọc: 8377

    1. Khoảng cách từ một điểm đến một đường thẳng

    Bài toán 1. Trong mặt phẳng tọa độ, cho đường thẳng có phương trình tổng quát ax + by + c = 0. Hãy tính khoảng cách d(M ;) từ điểm M(xM ; yM) đến .

    Giải. (h. 72) Gọi M′ là hình chiếu của M trên thì độ dài đoạn M′M chính là khoảng cách từ M đến .

    Tải trực tiếp tệp hình học động: L10_nc_ch3_h72.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Hiển nhiên cùng phương với vectơ pháp tuyến của , vậy có số k sao cho

    Từ đó suy ra

    Mặt khác, nếu gọi (x′ ; y′) là tọa độ của M′ thì từ (1) ta có

    Vì M’ nằm trên nên a(xM – ka) + b(yM¬ – kb) + c = 0. Từ đó suy ra:

    .

    Thay giá trị của k vào (2) ta được:

    1. Hãy tính khoảng cách từ điểm M đến đường thẳng trong mỗi trường hợp sau:

    Vị trí của hai điểm đối với một đường thẳng

    Cho đường thẳng và điểm M(xM ; yM). Nếu M’ là hình chiếu (vuông góc) của M trên thì theo lời giải của Bài toán 1, ta có

    Tương tự nếu có điểm N(xN, yN) với N’ là hình chiếu của N trên thì ta cũng có

    ?1. Có nhận xét gì về vị trí của hai điểm M, N đối với khi k và k’ cùng dấu ? Khi k và k’ khác dấu ?

    Ta có kết quả sau

    Cho đường thẳngvà hai điểm M(xM ; yM), N(xN, yN) không nằm trên. Khi đó

    Hai điểm M, N nằm cùng phía đối với khi và chỉ khi

    2. Cho tam giác ABC có các đỉnh là A(1 ; 0), B(2 ; -3), C(-2 ; 4) và đường thẳng . Xét xem cắt cạnh nào của tam giác.

    Ta có thể áp dụng công thức tính khoảng cách để viết phương trình các đường phân giác.

    Bài toán 2. Cho hai đường thẳng cắt nhau, có phương trình

    Chứng minh rằng phương trình hai đường phân giác của các góc tạo bởi hai đường thẳng đó có dạng

    3. Hãy giải Bài toán 2, với chú ý rằng điểm M thuộc một trong hai đường phân giác khi và chỉ khi nó cách đều hai đường thẳng (h. 73).

    Tải trực tiếp tệp hình học động: L10_nc_ch3_h73.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Ví dụ. Cho tam giác ABC với

    Viết phương trình đường phân giác trong của góc A.

    Giải. Dễ thấy các đường thẳng AB và AC có phương trình

    AB : 4x – 3y + 2 = 0 và AC : y – 3 = 0.

    Các đường phân giác trong và phân giác ngoài của góc A có phương trình

    Hay:

    4x + 2y – 13 = 0 (đường phân giác d1)

    4x – 8y + 17 = 0 (đường phân giác d2).

    Do hai điểm B, C nằm cùng phía đối với đường phân giác ngoài và nằm khác phía đối với đường phân giác trong của góc A nên ta chỉ cần xét vị trí của B, C đối với một trong hai đường, chẳng hạn d2. Thay tọa độ của B, C lần lượt vào vế trái của d2 ta được.

    4 – 16 + 17 = 5 > 0 và –16 – 24 + 17 = –23 < 0.

    Tức là B, C nằm khác phía đối với d2.

    Vậy phương trình đường phân giác trong của góc A là

    d2: 4x – 8y + 17 = 0.

    2. Góc giữa hai đường thẳng

    ĐỊNH NGHĨA

    Hai đường thẳng a và b cắt nhau tạo thành bốn góc. Số đo nhỏ nhất của các góc đó được gọi là số đo của góc giữa hai đường thẳng a và b, hay đơn giản là góc giữa a và b.

    Khi a song song hoặc trùng với b, ta quy ước góc giữa chúng bằng 00.

    ?2. Trên hình 74, góc giữa hai đường thẳng a và b bằng bao nhiêu? Hãy so sánh góc đó với góc giữa hai vectơ và góc giữa hai vectơ .

    Tải trực tiếp tệp hình học động: L10_nc_ch3_h74.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Góc giữa hai đường thẳng a b được kí hiệu , hay đơn giản là (a,b). Góc này không vượt quá 900 nên ta có

    4. Cho biết phương trình của hai đường thẳng lần lượt là

    Tìm tọa độ vectơ chỉ phương của hai đường thẳng và tìm góc hợp bởi hai đường thẳng đó.

    Bài toán 3

    a) Tìm côsin của góc giữa hai đường thẳng lần lượt cho bởi các phương trình

    a1x + b1y + c1 = 0 và a2x + b2y + c2 = 0.

    b) Tìm điều kiện để hai đường thẳng vuông góc với nhau.

    c) Tìm điều kiện để hai đường thẳng y = kx + b và y = k’x + b’ vuông góc với nhau.

    5.(Để giải Bài toán 3)

    Viết tọa độ hai vectơ chỉ phương:

    Hãy chứng tỏ rằng

    Từ đó đi đến các kết quả sau đây

    6. Tìm góc giữa hai đường thẳng trong mỗi trường hợp sau:


    Câu hỏi và bài tập

    15. Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Côsin của góc giữa hai đường thẳng ab bằng côsin của góc giữa hai vectơ chỉ phương của chúng.

    b) Nếu hai đường thẳng lần lượt có phương trình px + y + m = 0x + py + n = 0 thì

    c) Trong tam giác ABC ta có

    d) Nếu là góc giữa hai đường thẳng chứa hai cạnh AB, AC của tam giác ABC thì

    e) Hai điểm (7 ; 6) và (-1 ; 2) nằm về hai phía của đường thẳng y = x.

    16. Cho ba điểm A(4 ; -1), B(-3 ; 2), C(1 ; 6). Tính góc BAC và góc giữa hai đường thẳng AB, AC.

    17. Viết phương trình đường thẳng song song và cách đường thẳng ax + by + c = 0 một khoảng bằng h cho trước.

    18. Cho ba điểm A(3 ; 0), B(-5 ; 4) và P(10 ; 2). Viết phương trình đường thẳng đi qua P đồng thời cách đều A và B.

    19. Cho điểm M(2 ; 3). Viết phương trình đường thẳng cắt hai trục tọa độ ở A và B sao cho ABM là tam giác vuông cân tại đỉnh M.

    20. Cho hai đường thẳng

    Viết phương trình đường thẳng đi qua điểm P(3 ; 1) và cắt lần lượt ở A, B sao cho tạo với một tam giác cân có cạnh đáy là AB.

    School@net



    Bài viết liên quan:
    Toàn bộ chương trình sách giáo khoa môn Toán, phần Hình học lớp 12 - Nâng cao đã lên mạng với tất cả các hình ảnh động kèm theo (22/11/2011)
    Toán 12 - Chương III - Bài 5. Ôn tập cuối năm (21/11/2011)
    Toán 12- Nâng Cao - Chương III - Bài 4. Ôn Tập Chương III (19/11/2011)
    Toán 12 - Chương III - Bài 3. Phương trình đường thẳng (19/11/2011)
    Toán 12- Nâng Cao - Chương III - Bài 2. PHƯƠNG TRÌNH MẶT PHẲNG (18/11/2011)
    Toán 12 - Chương III - Bài 1. Hệ tọa độ trong không gian. (18/11/2011)
    Toán 12- Nâng Cao - Chương II - Bài 5. ÔN TẬP CHƯƠNG II (17/11/2011)
    Toán 12 - Chương II - Bài 4. Mặt nón, hình nón và khối nón (17/11/2011)
    Toán 12- Nâng Cao - Chương II - Bài 3. MẶT TRỤ, HÌNH TRỤ VÀ KHỐI TRỤ (16/11/2011)
    Toán 12 - Chương II - Bài 2. Khái niệm về mặt tròn xoay (15/11/2011)

    Phần mềm liên quan:

    Bài giảng Hình học 10 - GeoMath 10
    60 000 VND

    Bài giảng Hình học 11 - GeoMath 11
    60 000 VND

    Trắc nghiệm Giao thông
    45 000 VND

     Bản để in  Lưu dạng file  Gửi tin qua email


    Những bài viết khác:



    Lên đầu trang

     
    CÔNG TY CÔNG NGHỆ TIN HỌC NHÀ TRƯỜNG
     
    Phòng 1407 - Nhà 17T2 - Khu Trung Hoà Nhân Chính - Quận Cầu Giấy - Hà Nội
    Điện thoại: (024) 62511017 - Fax: (024) 62511081
    Email: school.net@hn.vnn.vn / thukhachhang@yahoo.com


    Bản quyền thông tin trên trang điện tử này thuộc về công ty School@net
    Ghi rõ nguồn www.vnschool.net khi bạn phát hành lại thông tin từ website này
    Site xây dựng trên cơ sở hệ thống NukeViet - phát triển từ PHP-Nuke, lưu hành theo giấy phép của GNU/GPL.